

ICME Grand Challenge on Light Field Image Compression

Irene Viola, Martin Rerabek, Tim Bruylants, Touradj Ebrahimi, Fernando Pereira, Peter Schelkens

- Grand Challenge on Light Field image compression
 - Collect new compression solutions for LF images
 - Evaluate proposed compression schemes w.r.t. anchor
 - Objective and subjective evaluations

Light Field photography

- Captures plenoptic information
- Allows change of perspective and refocus in post-processing

- Huge amount of information
- Need for coding techniques to compress the LF structure

bitstream

Reference and anchor JPEG **processing chain**

- Reference image generated following the same steps
- Anchor generated using legacy JPEG

- Twelve contents taken from LF dataset (EPFL)
- Four fixed compression ratios
 - 10:1, 20:1, 40:1, 100:1
 - From 1bpp to 0.1bpp

Light field content

JPEG Coding Conditions

Image ID	Imaga nama	Compression ratios				
	Image name	R1	R2	R3	R4	
I01	Bikes	10:1	20:1	40:1	100:1	
I02	Danger_de_Mort	10:1	20:1	40:1	100:1	
I03	Flowers	10:1	20:1	40:1	100:1	
I04	Stone_Pillars_Outside	10:1	20:1	40:1	100:1	
105	Vespa	10:1	20:1	40:1	100:1	
I06	Ankylosaurus_&_Diplodocus_1	10:1	20:1	40:1	100:1	
I07	Desktop	10:1	20:1	40:1	100:1	
I08	Magnets_1	10:1	20:1	40:1	100:1	
I09	Fountain_&_Vincent_2	10:1	20:1	40:1	100:1	
I10	Friends_1	10:1	20:1	40:1	100:1	
I11	Color_Chart_1	10:1	20:1	40:1	100:1	
I12	ISO Chart 12	10:1	20:1	40:1	100:1	

Quality Assessment Methodology

- Objective performance evaluation
 - Objective metrics: PSNR and SSIM
- Subjective performance evaluation
 - DSCQS methodology
 - Modified QualityCrowd 2 framework

Description Objective performance evaluation

• PSNR for Y channel

$$PSNR_Y(k, l) = 10 \log_{10} \frac{255^2}{MSE(k, l)}$$

$$MSE(k,l) = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} [I(i,j) - R(i,j)]^2$$

Objective performance evaluation

PSNR for YUV channel

 $PSNR_{YUV}(k,l) =$

 $6PSNR_{Y}(k,l)+PSNR_{U}(k,l)+PSNR_{V}(k,l)$

8

Description Objective performance evaluation

Mean PSNR

$$PSNR_{Y_{mean}} = \frac{1}{(K-2)(L-2)} \sum_{k=2}^{K-1} \sum_{l=2}^{L-1} PSNR_{Y}(k,l)$$

$$PSNR_{YUV_{mean}} = \frac{1}{(K-2)(L-2)} \sum_{k=2}^{K-1} \sum_{l=2}^{L-1} PSNR_{YUV}(k,l)$$

Description Objective performance evaluation

SSIM for Y

$$SSIM_Y(k,l) = \frac{(2\mu_I\mu_R + c_1)(2\sigma_{IR} + c_2)}{(\mu_I^2 + \mu_R^2 + c_1)(\sigma_I^2 + \sigma_R^2 + c_2)}$$

JPEG Subjective Performance Evaluation

- 3 rendered perspectives, 2 re-focused points
 - 5 test stimuli per content
- Only 6 contents out of 12 from the dataset

Light field content

Subjective performance evaluation

- DSCQS methodology
 - Double stimulus continuous quality scale
 - Rate quality level of reference and decoded image
 - Side by side configuration on a MacBook Pro Retina
 - 5-scale score from bad to excellent
- Modified QualityCrowd 2 framework

JPEG Subjective performance evaluation

Image quality

Α

в

- 7 algorithms were received
 - 5 were accepted
- Anonymized through random labels P1 to P5
 - Anchor P0 is legacy JPEG

Objective evaluation

Objective evaluation

Subjective evaluation

Subjective evaluation

• Welch's t-test of equal means

$$H0: MOS_{P_A} = MOS_{P_B}$$
$$H1: MOS_{P_A} \neq MOS_{P_B}$$

- Examine if the null hypothesis is rejected or not
- For each bitrate, store for how many contents and views one codec performs better than the other

wg1m73082 - ICME Grand Challenge on Light Field Compression

27

Statistical Analysis

- Multi-way ANOVA to test interaction among groups
- Inter- and intra-variance among views

Statistical analysis

	R1		R2		R3		R4	
Group	F	p-value	F	p-value	F	p-value	F	p-value
contents proponents contents*proponents	86.284 6.715 2.926	0.000 0.000 0.000	125.982 184.978 13.710	$0.000 \\ 0.000 \\ 0.000$	80.109 630.502 3.972	$0.000 \\ 0.000 \\ 0.000$	122.346 693.525 8.644	$\begin{array}{c} 0.000 \\ 0.000 \\ 0.000 \end{array}$
views	47.664	0.000	29.757	0.000	9.462	0.000	7.199	0.000
contents*views	2.388	0.002	1.471	0.109	1.684	0.048	1.153	0.311
proponents*views	1.974	0.015	1.256	0.227	2.385	0.002	1.909	0.019
focus	0.035	0.854	0.082	0.777	2.241	0.147	3.773	0.063
contents*focus	2.465	0.060	1.424	0.250	3.992	0.008	1.684	0.175
proponents*focus	2.697	0.044	0.491	0.780	0.643	0.669	0.927	0.480
perspective	3.287	0.046	1.113	0.337	0.100	0.905	2.668	0.079
contents*perspective	3.066	0.004	0.894	0.545	0.324	0.971	0.974	0.478
proponents*perspective	1.369	0.222	1.249	0.284	2.059	0.046	2.957	0.005

- Higher confidence interval
- Results are consistent with naïve viewers

JPEG Conclusions

- At higher bitrates, proponents and anchor have similar subjective performance
- At lower bitrates, P1 can be identified as performing better for the rendering points that were subjectively assessed,
- However, overall P1 exhibited lower PSNR performance at higher bitrates
- Several lessons were learned and ideas to improve the challenge in the future have been identified

Thank you!